Toggle navigation
首页
问答
IT问答
生活问答
电脑知识
百科
测评
2013考研数学,我考的是数学二,想问下高等数学的考试范围
发布于2022-01-13 05:34:56
别告我看考试大纲我用的同济5版,希望告我下具体哪章不考,懂得告下
2
个回答
网友回答
2022-01-13
高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、
单调性
、周期性和
奇偶性
复合函数
、
反函数
、
分段函数
和
隐函数
基本
初等函数
的性质及其图形 初等函数
函数关系
的建立
数列极限
与
函数极限
的定义及其性质 函数的左极限和右极限
无穷小量
和
无穷大量
的概念及其关系 无穷小量的性质及无穷小量的比较 极限的
四则运算
极限存在的两个准则:单调有界准则和
夹逼准则
两个重要极限: 函数连续的概念 函数
间断点
的类型 初等函数的连续性
闭区间
上
连续函数
的性质 考试要求 1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2. 了解函数的有界性、单调性、周期性和奇偶性. 3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念 4. 掌握
基本初等函数
的性质及其图形,了解初等函数的概念. 5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. 6. 掌握极限的性质及四则运算法则 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、
介值定理
),并会应用这些性质. 二、一元函数
微分学
考试要求 1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的
切线方程
和
法线方程
,了解导数的物理意义,会用导数描述一些物理量,理解函数的
可导性
与连续性之间的关系. 2. 掌握导数的四则运算法则和复合函数的
求导
法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶
微分形式
的不变性,会求函数的微分. 3. 了解
高阶导数
的概念,会求简单函数的高阶导数. 4. 会求分段函数的导数,会求隐函数和由
参数方程
所确定的函数以及反函数的导数. 5. 理解并会用
罗尔
(Rolle)定理、
拉格朗日
(Lagrange)
中值定理
和泰勒(Taylor)定理,了解并会用
柯西
( Cauchy )中值定理. 6. 掌握用
洛必达
法刚求
未定式
极限的方法. 7. 理解函数的极值概念,掌握用导数判断
函数的单调性
和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有
二阶导数
。当 >0时,f(x)的图形是凹的;当 <0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9. 了解曲率、曲率圆和
曲率半径
的概念,会计算曲率和曲率半径. 三、一元函数
积分学
考试内容:
原函数
和
不定积分
的概念 不定积分的基本性质 基本
积分公式
定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-
莱布尼茨
(Newton-Leibniz)公式 不定积分和定积分的
换元积分法
与
分部积分法
有理函数
、
三角函数
的
有理式
和简单无理函数的积分反常(广义)积分 定积分的应用 考试要求 1. 理解原函数的概念,理解不定积分和定积分的概念. 2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3. 会求有理函数、三角函数有理式和简单无理函数的积分. 4. 理解积分上限的函数,会求它的导数,掌握牛顿一
莱布尼茨公式
. 5. 了解
反常积分
的概念,会计算反常积分. 6. 掌握用定积分表达和计算一些
几何量
与物理量(
平面图形
的面积、平面曲线的
弧长
、旋转体的体积及
侧面积
、平行截面面积为已知的立体体积、功、引力、压力、
质心
、
形心
等)及函数的平均值. 四、多元函数微积分学 考试要求 1. 了解多元函数的概念,了解
二元函数
的几何意义. 2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3. 了解多元函数
偏导数
与
全微分
的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解
隐函数存在定理
,会求多元隐函数的偏导数. 4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的
充分条件
,会求二元函数的极值,会用
拉格朗日乘数法
求条件极值,会求简单多元
函数的最大值
和最小值,并求解一些简单的应用问题. 5. 了解
二重积分
的概念与基本性质,掌握二重积分的计算方法(
直角坐标
、
极坐标
). 五、
常微分方程
考试内容 常微分方程的基本概念 变量可分离的微分方程
齐次
微分方程
一阶线性微分方程
可降阶的
高阶微分方程
线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数
非齐次线性微分方程
微分方程的简单应用 考试要求 1. 了解微分方程及其阶、解、通解、初始条件和特解等概念. 2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解
齐次微分方程
3. 会用降阶法解下列形式的微分方程: , 和 . 4. 理解二阶线性微分方程解的性质及解的结构定理. 5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 6. 会解*项为
多项式
、
指数函数
、
正弦函数
、
余弦函数
以及它们的和与积的二阶常系数非齐次线性微分方程. 7. 会用微分方程解决一些简单的应用问题.
线性代数
一、
行列式
考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的
线性运算
矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的
转置
逆矩阵
的概念和性质 矩阵可逆的
充分必要条件
伴随矩阵
矩阵的
初等变换
初等矩阵
矩阵的秩
矩阵的等价
分块矩阵
及其运算 考试要求 1.理解矩阵的概念,了解
单位矩阵
、
数量矩阵
、
对角矩阵
、三角矩阵、
对称矩阵
、
反对称矩阵
和
正交矩阵
以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算. 三、向量 考试内容 向量的概念 向量的
线性组合
和线性表示 向量组的
线性相关
与
线性无关
向量组的
极大线性无关组
等价向量组
向量组的秩
向量组的秩与矩阵的秩之间的关系 向量的
内积
线性无关向量组的正交规范化方法 考试要求 1.理解n维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解
向量组等价
的概念,了解矩阵的秩与其行(列)向量组的秩的关系 5.了解内积的概念,掌握线性无关向量组正交规范化的
施密特
(Schmidt)方法. 四、
线性方程组
考试内容 线性方程组的
克莱姆
(Cramer)法则
齐次线性方程组
有非零解的充分必要条件
非齐次线性方程组
有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的
基础解系
和通解 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组的解的结构及通解的概念. 5.会用
初等行变换
求解线性方程组. 五、矩阵的
特征值
和
特征向量
考试内容 矩阵的特征值和特征向量的概念、性质
相似矩阵
的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵 考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵. 3.理解实对称矩阵的特征值和特征向量的性质. 六、
二次型
考试内容 二次型及其矩阵表示
合同变换
与
合同矩阵
二次型的秩
惯性定理
二次型的标准形和规范形用
正交变换
和
配方法
化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念. 2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形. 3.理解
正定二次型
、
正定矩阵
的概念,并掌握其判别法.
网友回答
2022-01-13
不是的
生活问答最新文章
1
孩子要高考了,有好的睡眠空调推荐吗?
2
做为复读生择哪个学校比较好?
3
高考没考好怎么办
4
桂林航天工业学院
5
江西新能源技工学校的新校区好不好?
6
我被哪所学校录取了?
7
开学时间是以录取通知书上为准还是以学校官网上为准
8
17173是干什么的??
9
华商联盟是干什么的
10
转呼啦圈是对身体干什么的,能锻炼腹肌呢?
相关阅读
1
2013考研数学,我考的是数学二,想问下高等数学的考试范围
2
请问不学高等数学一能学高等数学二吗?
3
考研数学二需不需要考高等数学的近似值问题!
回到
顶部