急!大学数学题!

发布于2022-03-31 12:58:36

求x/(x^3+8)的不定积分。

1个回答
admin
网友回答2022-03-31
x/(x^3+8)=x/[(x+2)(x^2-2x+4)]=A/(x+2)+(Bx+C)/(x^2-2x+4), A=-1/6,B=1/6,C=1/3. x/(x^3+8)=(-1/6)(1/(x+2))+(1/6)(x+2)/(x^2-2x+4). (-1/6)∫(1/(x+2))dx=(-1/6)(ln|x+2|) (1/6)∫(x+2)/(x^2-2x+4)dx= =(1/6)[∫(x-1)/(x^2-2x+4)dx+∫3/[(x-1)^2+3]dx] =(1/12)ln(x^2-2x+4)+(1/2)∫d(x-1)/[(x-1)^2+3] =(1/12)ln(x^2-2x+4)+(1/2√3)arctan[(x-1)/√3] ∫x/(x^3+8)dx= =(-1/6)(ln|x+2|)+(1/12)ln(x^2-2x+4)+(1/2√3)arctan[(x-1)/√3]+C.

回到
顶部