已知等差数列{an}和等比数列{bn}满足:a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,则a5+b5=______

发布于2022-01-13 00:07:09
2个回答
admin
网友回答2022-01-13
∵a1+b1=3,①a2+b2=a1+d+b1q=7,②a3+b3=a1+2d+b1q2=15,③a4+b4=a1+3d+b1q3=35④②-①可得,4-d=b1(q-1)③-②可得,8-d=b1q(q-1)④-③可得,20-d=b1q2(q-1)∴4-d8-d=1q,8-d20-d=1q∴4-d8-d=8-d20-d解方程可求d=2,q=3,b1=1,a1=2∴a5+b5=10+81=91故答案为:91
admin
网友回答2022-01-13
数列{an},{bn}都是等差数列
设数列{an}公差是da,{bn}公差是db
a1+b1=7
a3+b3=a1+2da+b1+2db=7+2(da+db)=21
da+db=7

a5+b5
=a1+4da+b1+4db
=a1+b1+4(da+db)
=7+4*7
=35

回到
顶部