黑洞是怎样形成的

发布于2022-02-22 23:57:06
6个回答
admin
网友回答2022-02-22
黑洞不再是个单纯的理论上的推断, 作为一种真实存在的可信度越来越高.科学家们在着手于星空中寻找黑洞的同时, 开始了对黑洞的形成机理的研究.   自古以来, 天文学家们就致力于星体的一生的研究.恒星最初是由作为星际物质浮游于宇宙中的尘埃聚集而成的.太阳就是一个典型, 它的内部发生着由氢原子核结合成氦原子核聚变, 那里的温度高达数千万度, 但是太阳的表面温度却只有六千度左右, 这样的状态最稳定, 恒星在该状态下能够维持数十亿年.   最终核聚变将从中心部向外扩展, 恒星开始膨胀, 成为很明亮但温度却不那么高的状态, 这就是红巨星.   在这个变化过程中, 巨星内部的氦开始凝缩, 凝缩产生的能量又使温度再次升高, 当蓄积的能量超过极限时, 就会发生大的爆炸, 在发出光的同时恒星缩小, 这就是新星.从字义上看新星似乎是新的星, 其实不然, 它来自略带陈旧感的红巨星, 是老龄之星.最终, 星体中心部的氦原子核进一步凝缩成铁原子之类的低能量物质.   新星在引力作用下进一步塌缩, 成为中心处具有相当高温度的白矮星.在经典理论中, 白矮星就是恒星一生的终结, 随着核物理学的发展, 科学家们发现还能进一步形成中子星.   具有一定质量的恒星将成为密度很高的白矮星, 之后星体由于自重进一步塌缩, 使得原子全部被压碎, 核外电子与原子核里的质子相结合变成了中子, 整个星体成为只有中子的原子核的集合……可以说此时星体本身就是一个巨大的原子核.   中子星的密度大约是每立方厘米1012 克.一块方糖大小的物质重达一百万吨, 相当于好几艘当今世界上超级油轮的运力.如果中子星再进一步塌缩, 其密度再增大一千倍、一万倍……时, 就将成为黑洞.   但是, 最近的研究成果表明, 恒星的一生并不一定都按照上述的过程进行.质量小于太阳的8 倍的恒星, 其能量在宇宙中散失后, 成为白矮星然后冷却下去.质量在太阳的8 倍以上、20 (或30) 倍以下的恒星, 即使是在新星爆发后, 仍然具有很大的能量, 它将经过长期的演化最终成为中子星, 但是还不具备更强的塌缩能力.   研究表明, 中子星的半径多在10 公里左右.大于该范围的星最后将变成黑洞, 成为吸收一切物质的宇宙之洞.但是, 对于上述根据天体初期的质量去预测它的晚期的方法, 存在着不同的观点 (很多人认为初始质量为太阳的2—3 倍的恒星也有可能变成黑洞) , 因此我们还不能断言哪一种方法是绝对可以信赖的.宇宙学的研究之难, 由此可以略见一斑.
admin
网友回答2022-02-22
我就简单说下黑洞形成(现在无论哪个国家都无法说明黑洞具体形成的原因,估计只处于理论阶段) 我记得在初中物理课本上简单的说到过,爱因斯坦用数学形式简单的计算和说明了一下,公式我忘记了,大概的意思是:星球是具有引力的,引得越大,周围的物体就会向星球靠近(中子星的引力就非常非常的大)但是,当引力大到很大的极限时,连光都无法逃脱引力,黑洞就形成了,因为连光都无法逃脱,所以黑洞就出现了像我们所看到得那样是“黑色”的。 简而易之,就是说某个“星球”的引力非常大,光都被它吸住逃不掉,就出现了黑洞。
admin
网友回答2022-02-22
楼主如果只需要科普知识的话只用一句话就成: 黑洞一般是由质量大于太阳质量100倍以上的恒星演化而来的,这类大质量恒星衰老离开主序星后由II型超新星爆炸形成中子星或者黑洞。
admin
网友回答2022-02-22
天体之间碰撞形成的高质量的集合体,质量大,万有引力大,所以能吸收任何物体
admin
网友回答2022-02-22
大质量恒星爆炸“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。 根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。 等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。 那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。 我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。 质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。 这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。 与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。 在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背! “黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。
admin
网友回答2022-02-22
黑洞不再是个单纯的理论上的推断, 作为一种真实存在的可信度越来越高.科学家们在着手于星空中寻找黑洞的同时, 开始了对黑洞的形成机理的研究.   自古以来, 天文学家们就致力于星体的一生的研究.恒星最初是由作为星际物质浮游于宇宙中的尘埃聚集而成的.太阳就是一个典型, 它的内部发生着由氢原子核结合成氦原子核的聚变, 那里的温度高达数千万度, 但是太阳的表面温度却只有六千度左右, 这样的状态最稳定, 恒星在该状态下能够维持数十亿年.   最终核聚变将从中心部向外扩展, 恒星开始膨胀, 成为很明亮但温度却不那么高的状态, 这就是红巨星.   在这个变化过程中, 巨星内部的氦开始凝缩, 凝缩产生的能量又使温度再次升高, 当蓄积的能量超过极限时, 就会发生大的爆炸, 在发出光的同时恒星缩小, 这就是新星.从字义上看新星似乎是新的星, 其实不然, 它来自略带陈旧感的红巨星, 是老龄之星.最终, 星体中心部的氦原子核进一步凝缩成铁原子之类的低能量物质.   新星在引力作用下进一步塌缩, 成为中心处具有相当高温度的白矮星.在经典理论中, 白矮星就是恒星一生的终结, 随着核物理学的发展, 科学家们发现还能进一步形成中子星.   具有一定质量的恒星将成为密度很高的白矮星, 之后星体由于自重进一步塌缩, 使得原子全部被压碎, 核外电子与原子核里的质子相结合变成了中子, 整个星体成为只有中子的原子核的集合……可以说此时星体本身就是一个巨大的原子核.   中子星的密度大约是每立方厘米1012 克.一块方糖大小的物质重达一百万吨, 相当于好几艘当今世界上超级油轮的运力.如果中子星再进一步塌缩, 其密度再增大一千倍、一万倍……时, 就将成为黑洞.   但是, 最近的研究成果表明, 恒星的一生并不一定都按照上述的过程进行.质量小于太阳的8 倍的恒星, 其能量在宇宙中散失后, 成为白矮星然后冷却下去.质量在太阳的8 倍以上、20 (或30) 倍以下的恒星, 即使是在新星爆发后, 仍然具有很大的能量, 它将经过长期的演化最终成为中子星, 但是还不具备更强的塌缩能力.

回到
顶部