20题怎么做

发布于2022-01-13 09:31:58

1个回答
admin
网友回答2022-01-13
证明:∵∠2+∠3=90º,∠1+∠2=90º,     ∴∠1=∠3,     ∵AF⊥BD,∴∠1+∠BAF=90º,     ∵ ∠1+∠2=90º,     ∴∠BAF=∠2,     在⊿ABF和⊿BCE中,有,     ∠BAF=∠2,     AB=BC,     ∠1=∠3,     ∴⊿ABF≌⊿BCE,     ∴BF=CE=5,AF=BE=2,     易得:Rt⊿ADF∽Rt⊿CDE,     ∴AF:CE=DF:DE,     2:5=DF:DE,     ∴  2:7=DF:(DE+DF)=DF:EF=DF:(BF-BE)=DF:(BF-AF)=DF:(5-2)=DF:3,     ∴DF=6/7,     ∴ DE=BF-BE-DF=5-2-(6/7)=15/7,     ∴EF=DE+DF=15/7+6/7=21/7=3,

回到
顶部